

International Journal of Techno-Management Research, Vol. 05,Issue 02, September 2017 ISSN: 2321-3744

 1

Average Span & Comment Ratio for Maintenance of Model Using

Fuzzy Technique

*Rupali Malhotra & **Naveen Jindal

*Head, Department of Computer Sciences & Engineering, Sat Priya Group of

Institutions, Rohtak, Haryana

** M.Tech. Student, Department of Computer Sciences & Engineering,

Sat Priya Group of Institutions, Rohtak, Haryana

(Email: jindalnj2012@gmail.com)

Abstract

Various metrics-based approaches try to define maintainability as compliances to a set of

rules that correspond to measurable properties of the code, such as strong cohesion,

limited coupling etc. The general problem with this approach is the lack of a sound

rationale for the selected criteria which in turn sometimes has a tendency of discussing

some kind of technical beauty instead of effectively improving software maintenance.

We measured the maintainability of the software. The statement is “Software

Maintainability Prediction Modeling”. Following Steps showed the research

methodology-First step is to measure Software Maintainability metrics-Average Life

Variable span and Comment Ratio. We studied the different value of the four

parameters, the value of these parameters should be low so that the maintainability will

be low and the maintenance cost will be reduced. The efforts required for measuring the

maintainability will be reduced. Minimizes or eliminates costly downtime increases

profitable uptime. Fuzzy model helps a lot to validate these attributes. Future work that

can be done in this field to improve the accuracy of measurement, so as such system can

be developed. We suggest the validation of this model in real time. When some error

will be introduced in the project the time taken for correction of this error in

maintenance time will be calculated.

Key Words: Fuzzy Technique, Average Span, Comment Ratio, Maintainability

Introduction

The term most frequently associated with more flexible software and significantly

reduced long-term costs is maintainability. Frequently found definition of

maintainability such as:

Besides this rather native definition, various metrics-based approaches try to define

maintainability as compliances to a set of rules that correspond to measurable properties

mailto:jindalnj2012@gmail.com

International Journal of Techno-Management Research, Vol. 05,Issue 02, September 2017 ISSN: 2321-3744

 2

of the code, such as strong cohesion, limited coupling, etc. The general problem with

this approach is the lack of a sound rationale for the selected criteria which in turn

sometimes has a tendency of discussing some kind of technical beauty instead of

effectively improving software maintenance. In 2003, a study on software maintenance

practices in German software organization. While 60 % out of the 47 respondents said

that they would consider software maintenance as a “significant problem”, only 20%

performed specific checking for maintainability during quality assurance. The criteria

used by these 20% to check for maintainability differed significantly and ranged from

object orientation, cyclomatic complexity limited numbers of lines per method,

descriptive identifier naming, down to service oriented architecture or OMG‟s model

driven architecture. Hence, there is little common ground on what “maintainability”

actually is, how it can be assessed and how it could be achieved. A maintenance process

is shown in Figure-1.

 Figure-1: Maintenance Process

There is a little confusion on what “maintainability” actually is, how it can be accessed,

how it could be achieved. This confusion can easily be explained and resolved by

considering “maintainability” as a term. The “ility” ending is used to transform the

adjective “maintainable” into a noun and thereby denote it as a property of a system. The

adjective “maintainable” in turn denotes the assumption that the activity “to maintain”

(verb) is a property of the object that we regard, i.e. a software system. However, the

perception that the ability to maintain a system was a property of the system is very

limited and neglects various other factors that have a strong influence on software

maintenance activities, such as the qualification of maintainers, organizational

knowledge management and adequate tools. This shortcoming is most obvious when it

comes to “readability” since the ability to read is primarily not a property of the

document or program to read but a question of the skills reader.

Therefore, we strongly argue that maintainability is not solely a property of a system but

touches three different dimensions:

1. The skills of the organization performing software maintenance

2. Technical properties of the system under consideration

International Journal of Techno-Management Research, Vol. 05,Issue 02, September 2017 ISSN: 2321-3744

 3

3. Requirements engineering

Types of Maintenance

Accordingly, several authors consider a fourth category of maintenance, named

preventive maintenance, which includes all the modifications made to a piece of

software to make it more maintainable.

 Corrective Maintenance: Reactive modification of a software product

performed after delivery to correct discovered problems. It deals with fixing

bugs in the code.

 Adaptive Maintenance: Modification of a software product performed after

delivery to keep a software product usable in a changed or changing

environment. It deals with adapting the software to new environment.

 Perfective Maintenance: Modification of a software product performed after

delivery to improve performance or maintainability. It deals with updating

the software according to changes in user requirements.

 Preventive Maintenance: Modification of a software product performed after

delivery to detect and correct latent faults in the software product before they

become effective faults. It deals with updating documentation and making

the software more maintainable.

These four types of maintenance can characterize all changes to the system. Corrective

maintenance is-: „Traditional maintenance’ while other types are considered as-

‘Software evolution’ Maintenance is needed to ensure that the software continues to

satisfy user requirements.

 Correct Faults

 Improve the design

 Implement enhancements

 Interface with other system

 Migrate legacy software

 Retire software

Literature Review

Aggarwal et. al. described that Software maintenance is a task that every development

group has to face when the software is delivered to the customers‟ site, installed and is

operational. The time spent and effort required for keeping software operational

consumes about 40-70% of cost of entire life cycle. This study proposes a four parameter

integrated measure of software maintainability using a fuzzy model. The study also

includes empirical data of maintenance time of projects which has been used to validate

the proposed model.

International Journal of Techno-Management Research, Vol. 05,Issue 02, September 2017 ISSN: 2321-3744

 4

Alain addressed the assessment and improvement of the software maintenance function

by proposing improvements to the software maintenance standards and introducing a

proposed maturity model for daily software maintenance activities: Software

Maintenance Maturity Model (SMmm). The software maintenance function suffers from

a scarcity of management models to facilitate its evaluation, management, and

continuous improvement. The SMmm addresses the unique activities software

maintenance while preserving a structure similar to that of the CMM maturity model. It

is designed to be used as a complement to this model. The SMmm is based on

practitioners experience, international standards, and the seminal literature on software

maintenance. We present the model‟s purpose, scope, foundation, and architecture,

followed by its initial validation.

Dhankhar and Mittal described Software maintainability

is a measure of the ease with which a software system or component can be modified to

correct faults, improve performance or other attributes, or adapt to a changed

environment‟ It is generally seen that maintainability very much depends on the type of

Programs. In this Paper, we include an analytical study for maintainability of Object

Oriented Software‟s. Inheritance and polymorphism are key concepts in object oriented

programming (OOP), and are essential for achieving reusability and extendibility, but

they also make programs more difficult to understand. .We have tried to show by

arguments and by some empirical analysis that widely used complexity metrics like lines

of code, Halstead‟s Software Science Metrics and Mc Cabe‟s Cyclomatic Complexity

may not be appropriate to measure the complexity of Object Oriented programmed those

written in other object oriented languages, since they do not address concepts like

inheritance and encapsulation. Some other measuring techniques take a number of

factors, which makes estimation very complex.

Megha and Mittal studied Software maintainability is a measure of the ease with which

a software System or component can be modified to correct faults, improve performance

or other attributes, or adapt to a changed environment. It is generally seen that

maintainability very much depends on the type of Programs. Software maintenance is a

time consuming and expensive phase of a software product‟s life cycle. The time spent

and effort required for keeping software operational consumes about 40-70 % of cost of

entire life cycle. In this Paper, we will focus on how a proposed model will reduced the

complexity of the projects and their maintenance cost and efforts also. Minimizes or

eliminates costly downtime increases profitable uptime. Reduces unscheduled

maintenance repairs can be made at times that least affect production.

Megha and Mittal emphasized that Software maintenance is a task that every

development group has to face when the software is delivered to the customer‟s site,

installed and is operational. It is generally seen that maintainability very much depends

on the type of Programs. Software maintenance is a time consuming and expensive

phase of a software product‟s life cycle. The time spent and efforts required for keeping

International Journal of Techno-Management Research, Vol. 05,Issue 02, September 2017 ISSN: 2321-3744

 5

software operational consumes about 40-70% of cost of the entire life cycle This study

proposes a four parameters that integrated to measure the software maintainability. This

study will evaluate how to reduce the maintenance cost and the efforts by using these

parameters. So, we have developed fuzzy based model for measuring the software

maintainability.

Research Methodology

Matlab Fuzzy Logic Tool Box

The Fuzzy Logic Toolbox is a collection of functions built on the MATLAB numeric

computing environment. It provides tools for you to create and edit fuzzy inference

systems within the framework of MATLAB. This toolbox relies heavily on graphical

user interface (GUI) tools to help you accomplish your work, although you can work

entirely from the command line if you prefer.

The toolbox provides three categories of tools:

 Command line functions

 Graphical interactive tools

 Simulink blocks and examples

The first category of tools is made up of functions that you can call from the command

line or from your own applications. Many of these functions are MATLAB M-files,

series of MATLAB statements that implement specialized fuzzy logic algorithms. You

can view the MATLAB code for these functions using the statement type function_

name

You can change the way any toolbox function works by copying and renaming the M-

file, then modifying your copy. You can also extend the toolbox by adding you‟re M-

files. Secondly, the toolbox provides a number of interactive tools that let you access

many of the functions through a GUI. Together, the GUI-based tools provide an

environment for fuzzy interference system design, analysis, and implementation. The

third category of tools is a set of blocks for use with the Simulink simulation software.

These are specially designed for high speed fuzzy logic inference in the Simulink

environment.

International Journal of Techno-Management Research, Vol. 05,Issue 02, September 2017 ISSN: 2321-3744

 6

 Figure-2: Fuzzy Logic Toolbox

Fuzzy Inference System

The FIS Editor handles the high-level issues for the system: How many inputs and

output variables? What are their names? The Fuzzy Logic Toolbox doesn‟t limit the

number of inputs. However, the number of inputs is too large, or the number of

membership functions is too big, then it may also be difficult to analyze the FIS using

the other GUI tools. The Membership Function Editor is used to define the shapes of all

the membership functions associated with each variable.

International Journal of Techno-Management Research, Vol. 05,Issue 02, September 2017 ISSN: 2321-3744

 7

 Figure-3: Fuzzy Inference System

The Rule Editor is for editing the list of rules that defines the behavior of the system.

The Rule Viewer and the Surface Viewer are used for looking at, as opposed to editing,

the FIS. They are strictly read-only tools. The Rule Viewer is a MATLAB based display

of the fuzzy inference diagram shown at the end of the last section. Used as a diagnostic,

it can show which rules are active, or how individual membership function shapes are

influencing the results. The Surface Viewer is used to display the dependency of one of

the outputs on any one or two of the inputs- that is, it generates and plots an output

surface map for the system.

Problem Statement

We measure the maintainability of the software. The statement is “Software

Maintainability Prediction Modeling”. Following Steps shows the research

methodology-First step is to measure Software Maintainability metrics-

Average Life Variable span

Comment Ratio

Second step is applying these estimated metrics to FIS (Fuzzy Inference System) tool to

get maintainability measure.

Third step is generating the experimental data of these attributes.

Proposed Model

Average Number of Live Variable-

Average Life Variable Span-

Average life variable span: The span is the number of statements between two

successive references of the some variable. The average span size (LS) for a program

could be completed using the equation.

 LS program = LS/n

Where n is an executable statement.

Comment Ratio-

Comment ratio is defined as

 CR = (s+c)/c

Where s denotes total lines of code and c represents total number of comment lines. The

lower the ratio, the better is the readability, and the better the readability, the better is the

International Journal of Techno-Management Research, Vol. 05,Issue 02, September 2017 ISSN: 2321-3744

 8

maintainability. Comments provide better readability and therefore the Comments Ratio

is an important factor that affects maintainability.

These factors will be used to measure the maintainability of software.

Fuzzy Based Maintainability Assessment

Fuzzification

The first step is to take the inputs and determine the degree to which they belong to each

of the appropriate fuzzy sets via membership‟s functions. In Fuzzy Logic Toolbox, the

input is always a crisp numerical value limited to the universe of discourse of the input

variable (in this case the interval between 0 and 10) and the output is a fuzzy degree of

membership in the qualifying linguistic set (always the interval between 0 and 1).

Fuzzification of the input amount is to either a table lookup or a function evaluation.

Our study based on eighty rules, and each of the rules depends on resolving the inputs

into a number of different fuzzy linguistic sets: If Comment Ratio is low and Average

Cyclomatic Complexity is low and Live Variable is low and Life Span is low then

maintainability is very good and so on. Before the rules can be evaluated, the inputs

must be fuzzified according to each of these linguistic sets. For example, how much

Average number of live variables is?

All these inputs can be classified into fuzzy sets viz. Low, Medium, and High as shown

in Figures-4 & 5. The output maintainability is classified as Very Good, Good, Average,

Poor, Very poor as shown in Figure-6. In order to fuzzify the inputs, the following

membership functions are chosen namely Low, Medium and High.

 Figure-4 Fuzzification of Average life span

International Journal of Techno-Management Research, Vol. 05,Issue 02, September 2017 ISSN: 2321-3744

 9

 Figure-5 Fuzzification of Comment Ratio

 Figure-6 Fuzzification of output variable – maintainability

The toolbox includes 11 built-in membership function types. These 11 functions are, in

turn, built from several basic functions:

Piecewise linear functions

The Gaussian distribution function

The sigmoid curve

Quadratic and cubic polynomial curves

The simplest membership functions are formed using straight lines. Of these, the

simplest is the triangular membership function, and it has function name trimf. This

function is nothing more than a collection of three points forming a triangle. The

trapezoidal membership function, trapmf has a flat top and really is just a truncated

triangle curve. These straight line membership functions have the advantage of

simplicity.

Rule Base

 In Rule Base, we have to define rules. When the output is calculated, these rules are

exercised. In first step, all the linguistic sets have been defined for both input and output.

All possible combination of inputs is considered which leads to 3^4 i.e. 81 sets. The

maintainability in case of all eighty-one combinations is classified as either Very Good,

Good, Average, Poor or Very Poor by expert opinion. These lead to formation of 81

rules for the fuzzy model. All of them are shown as below:

International Journal of Techno-Management Research, Vol. 05,Issue 02, September 2017 ISSN: 2321-3744

 10

1. If (LS is low) and (CR is low) then maintainability is very good.

2. If (LS is med) and (CR is med) then maintainability is average.

3. If (LS is high) and (CR is high) then maintainability is very poor.

4. If (LS is low) and (CR is med) then maintainability is good.

5. If (LS is med) and (CR is low) then maintainability is very good.

6. If (LS is med) and (CR is high) then maintainability is poor.

7. If (LS is high) and (CR is med) then maintainability is poor.

8. If (LS is high) and (CR is low) then maintainability is average.

9. If (LS is low) and (CR is high) then maintainability is good.

After the inputs are fuzzified, we know the degree to which each part of the antecedent is

satisfied for each rule. If the antecedent of a given rule has more than one part, the fuzzy

operator is applied to obtain one number that represents the result of the antecedent for

that rule. This number is then applied to the output function. The input to the fuzzy

operator is two or more membership values from fuzzified input variables. The output is

a single truth value.

Defuzzification

The input for the defuzzification process is a set and output is a single number. As much

as fuzziness helps the rule evaluation during the intermediate steps, the final desired

output for each variable is generally a single number. However, the aggregate of a fuzzy

set encompasses a range of output values, and so must be defuzzified in order to resolve

a single output value from the set. Perhaps the most popular defuzzification method is

the centroid calculation, which returns the center of area under the curve. There are five

built-in methods supported: centroid, bisector, middle of maximum, largest of

maximum, and smallest of maximum.

International Journal of Techno-Management Research, Vol. 05,Issue 02, September 2017 ISSN: 2321-3744

 11

 Figure-7: Defuzzification of Output

Experimental Study and Results

It is generally seen that maintainability very much depends on the type of data. We have

tried to measure the maintainability of software. We have tried to show by arguments

and by some empirical analysis that widely used complexity metrics like lines of code,

Halstead‟s Software Science Metrics and others may not be appropriate to measure the

complexity of the software. These metrics may not be appropriate to measure the

maintenance cost and the efforts that are used to maintain software. In these we have

considered the five software projects of undergraduate engineering students. After

considered the projects, apply the different attributes on these projects, different values

will be come from the different projects of all the four parameters. The input data is the

value of the four parameters and the processing or computation takes place in the fuzzy

inference system and the output will be the maintainability. The implementation has

been done in MATLAB.

 Data Computation Production

Data

LV, LS,

CR,Acc

Maintainabili

ty

Fuzzy

Inference

System

International Journal of Techno-Management Research, Vol. 05,Issue 02, September 2017 ISSN: 2321-3744

 12

 Figure-8: Snapshot of Matlab

Experimental Result

In order to validate the model, we have considered five software projects of

undergraduate engineering students. They were chosen only when proper set of input

Variables were available. The maintainability was also calculated using the proposed

fuzzy model. The results are shown in Table-1.

Table-1: Value of maintainability

In these graphs all the four parameters were shown on one axis and the project no were

shown on other axis. It can be seen there is hardly any co-relation between four

parameters and the maintainability. These four parameters cannot individually predict

the maintainability. Thus the fuzzy model is validated and that the integrated value of the

maintainability gives the better result than any individual input metric is also verified

with the help of results as shown in above Table.

P.No LV LS CR ACC Maint.

1 6.07 2.07 43.33 3.53 9.9992

2 4 0.328 45 3 8.0021

3 4.857 0.157 11.81 2.59 6.0000

4 4.5 0.0218 43 2.3 7.9800

5 5.5 0.416 45.5 3.2 9.2441

International Journal of Techno-Management Research, Vol. 05,Issue 02, September 2017 ISSN: 2321-3744

 13

 Figure-9: Graph of Live Span

Figure-10: Graph of Comment Ratio

 Figure-11: Graph of Maintainability

International Journal of Techno-Management Research, Vol. 05,Issue 02, September 2017 ISSN: 2321-3744

 14

Conclusion

This experimental provides details of experimental setup means considered data and full

arrangements of experiment. It describes data that is various factors. Experimental

Results section describes the outcome of experiment. It includes the value of

maintainability of different projects in a tabular form corresponds to the different factors.

The evaluation of maintainability using an excel graph. Some traditional metrics are

there to measure the maintainability of software metrics like- line of code, Halstead‟s

Software Science Metrics and Mc Cabe‟s Cyclomatic Complexity. But these metrics are

not suitable to measure the maintainability of the software. It is generally seen that

maintainability very much depends on the type of Programs. We have tried to show by

arguments and by some empirical analysis that widely used traditional metrics may not

be appropriate to measure the complexity of the software.

The time spent and efforts required for keeping software operational consumes about 40-

70% of cost of the entire life cycle This study proposes a four parameters that integrated

to measure the software maintainability. This study will evaluate how to reduce the

maintenance cost and the efforts by using these parameters. So, we have developed

fuzzy based model for measuring the software maintainability.

Contribution of Present Work

A lot of techniques developed that included a number of factors to measure the

maintainability like- Method Coupling (MC), Average Method Coupling (AMC), Class

Coupling (CC). Aggarwal presented a model that takes a number of factors as input and

measure maintainability. We are about on four factors like Average number of live

variable, Average live Span, Comment Ratio, and Average Cyclomatic Complexity to

measure the maintainability. We realized that these factors will provide more accurate

view of maintainability for software. Maintainability can be estimated with the help of

fuzzy model and the results prove that the integrated value of the maintainability gives

the better results than any individual input metric is also verified with the help of

empirical results. As we studied the different value of the four parameters, the value of

these parameters should be low so that the maintainability will be low and the

maintenance cost will be reduced. The efforts required for measuring the maintainability

will be reduced. Minimizes or eliminates costly downtime increases profitable uptime.

Fuzzy model helps a lot to validate these attributes.

Future Work

Future work that can be done in this field to improve the accuracy of measurement, so as

such system can be developed. We suggest the validation of this model in real time.

When some error will be introduced in the project the time taken for correction of this

error in maintenance time will be calculated.

International Journal of Techno-Management Research, Vol. 05,Issue 02, September 2017 ISSN: 2321-3744

 15

References

1- K.K. Aggarwal. „Measurement of Software Maintainability Using a Fuzzy

Model‟ Journal of Computer Sciences 1(4):538-542, 2005

2- Priyanka Dhankhar, Harish Mittal „Software Maintainability in Object Oriented

Software‟ in 2010 Proceedings conference 8
th
 may 2010.

3- Alain April. “Software Maintenance Maturity Model: The software Maintenance

process model” 2004

4- Megha and Harish Mittal “Review of Software Maintainability Prediction

Modeling” proceeding of 1
st
 National Conference on Advances Computational

Intelligence NCACI-2011 9th July 2011

5- Megha and Harish Mittal “Fuzzy Based Software Maintainability Prediction

Modeling” proceeding of 1
st
 National Conference on Advances Computational

Intelligence NCACI-2011 9th July 2011

